Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 4. TbScO₃(110)

Richard T. Haasch, Lane W. Martin, and Eric Breckenfeld

Citation: Surface Science Spectra 21, 157 (2014); doi: 10.1116/11.20140909

View online: http://dx.doi.org/10.1116/11.20140909

View Table of Contents: http://scitation.aip.org/content/avs/journal/sss/21/1?ver=pdfcov

Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Articles you may be interested in

Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 5. DyScO₃(110)

Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 3. GdScO₃(110)

Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 2. NdScO₃(110)

Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 1. PrScO₃(110)

Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. Download to IP: 73.15.5.18 On: Sun, 18 Jan 2015 23:52:15
Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 4. TbScO$_3$(110)

Richard T. Haascha
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana-Champaign

Lane W. Martin
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana-Champaign; Department of Materials Science and Engineering, University of California, Berkeley; and Materials Science Division, Lawrence Berkeley National Laboratory

Eric Breckenfeld
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana-Champaign; and Naval Research Laboratory, Washington, DC

(Received 8 October 2014; accepted 4 December 2014; published 31 December 2014)

X-ray photoelectron spectroscopy (XPS) was used to analyze a commercially available TbScO$_3$(110) bulk single crystal. XP spectra were obtained using incident monochromatic Al K$_x$ radiation at 0.83401 nm. A survey spectrum together with Tb 3d, O 1s, Sc 2p, C 1s, Tb 4p, Tb 4d, Sc 3s, Tb 5s, Sc 3p, Tb 5p, and O 2s core level spectra and the valence band are presented. The spectra indicate the principle core level photoelectron and Auger electron signals and show only minor carbon contamination. Making use of the O 1s, Sc 2p, Tb 4d lines and neglecting the components related to surface contaminants, XPS quantitative analysis reveals an altered stoichiometry of the air-exposed crystal surface of Tb$_{1.07}$ScO$_{1.88}$.

[http://dx.doi.org/10.1116/11.20140909]

Keywords: terbium scandium oxide; rare-earth scandate; perovskite

INTRODUCTION

Transition metal oxides present an impressive variety of functionality which is not available in more traditional systems such as group IV and III-V semiconductors or elemental metals. Among the many possible functionalities are, for instance, ferroelectricity (Ref. 1) and magnetism (Ref. 2), colossal magnetoresistance (Ref. 3), and high temperature superconductivity (Ref. 4), with transport character ranging from insulating to semiconducting to metallic. Furthermore, these properties are extremely sensitive to perturbations from chemistry, structural defects, strain and many other effects and this, in turn, provides the materials engineer a number of routes by which to engineer new functionalities in this class of materials (Ref. 5).

While even simple oxide systems, such as binary oxides, exhibit a broad diversity of properties, it is the ternary systems which have received the most attention in recent years. In particular, materials possessing the perovskite structure (with chemical formula ABO$_3$) have been observed to exhibit an incredible variety of functionality and phenomena. Advances in thin film epitaxy, particularly pulsed laser deposition, RF magnetron sputtering, and molecular beam epitaxy, have enabled researchers to carefully tune material properties using epitaxial strain. Such approaches have provided an opportunity to apply large biaxial strains (as much as several percent in some cases) to nanoscale films of various materials which would lead to cracks in bulk materials under similar values of hydrostatic strain (Ref. 6).

aAuthor to whom correspondence should be addressed.

SPECIMEN DESCRIPTION (ACCESSION #01318)

Host Material: Single crystal TbScO$_3$
CAS Registry #: unknown
Host Material Characteristics: homogeneous; solid; single crystal; dielectric; inorganic compound
Chemical Name: terbium scandium oxide
Source: Crystec, GmbH. Grown by the Czochralski method.
Host Composition: TbScO$_3$
Form: single crystal
Structure: orthorhombic distorted perovskite-like structure Pnma
$Z = 4$, $a = 0.57233$ nm, $b = 0.79147$ nm, $c = 0.54543$ nm, $V = 0.2497(1)$ nm3 (Ref. 7)

History & Significance: Various perovskite-based compounds have been widely used as substrates for a number of important applications such as epitaxial substrates for high TC oxide superconductors (Ref. 8), ferroelectric materials (Ref. 9), high-quality optoelectronic semiconductors (Ref. 10), and colossal magnetoresistive materials (Ref. 11). One particular group of perovskite-based materials, rare-earth scandates, is gaining attention as a candidate for high-k dielectrics (Refs. 12 and 13). In order to gain an increased understanding of the surfaces and hetero-interfaces of perovskite-based materials, a TbScO$_3$(110) bulk single crystal was analyzed using X-ray photoelectron spectroscopy.

As Received Condition: as grown
Analyzed Region: same as host material

Ex Situ Preparation/Mounting: Samples were cleaned ultrasonically for 5 min each in Formula 409®, methyl alcohol, and deionized water. Samples were mounted onto the sample holder using double-sided carbon tape (Pella product number 16074).

In Situ Preparation: None

Pre-Analysis Beam Exposure: less than 2 min; no x-ray degradation effects observed

Charge Control: low energy flood gun/magnetic immersion lens combination, filament current = 1.8 A, charge balance = 3 V, filament bias = 1 V

Temp. During Analysis: 300 K

Pressure During Analysis: <3 × 10⁻⁷ Pa

INSTRUMENT DESCRIPTION

Manufacturer and Model: Kratos Axis Ultra

Analyzer Type: spherical sector

Detector: channeltron electron multiplier

Number of Detector Elements: 8

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA —

Spectrometer

Analyzer Mode: constant pass energy

Throughput (T = E⁰): N = 0

Excitation Source Window: not specified

Excitation Source: Al Kα, monochromatic

Source Energy: 1486.6 eV

Source Strength: 180 W

Source Beam Size: 2000 μm × 2000 μm

Signal Mode: multichannel direct

Geometry

Incident Angle: 54°

Source to Analyzer Angle: 54°

Emission Angle: 0°

Specimen Azimuthal Angle: 45°

Acceptance Angle from Analyzer Axis: 0°

Analyzer Angular Acceptance Width: 40° × 40°

DATA ANALYSIS METHOD

Energy Scale Correction: The binding energy scale was referenced to C 1s = 285.0 eV.

Recommended Energy Scale Shift: +1.91 eV for high-resolution spectra

Peak Shape and Background Method: Background: Custom three parameter Tougaard background (Ref. 14), U 4 Tougaard (B, C, D, T0=0) (Ref. 15), was used. O 1s: B = 299 eV², C = 542 eV², D = 275 eV², Sc 2p: B = 299 eV², C = 200 eV², D = 275 eV², C 1s: B = 299 eV², C = 400 eV², D = 275 eV², Tb 4d: B = 299 eV², C = 290 eV², D = 275 eV².

Quantitation Method: Quantification was done using region and component definitions with CasaXPS version 2.3.15. Sensitivity factors supplied by Kratos Analytical. Errors are given as ±1 standard deviation. Standard deviations are calculated by CasaXPS using a Monte Carlo method for determining the error distribution for the computed areas.

ACKNOWLEDGMENTS

This work was carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. E.B. and L.W.M. acknowledge support from the National Science Foundation under grants DMR - 1124696 and DMR - 1451219.

REFERENCES

<table>
<thead>
<tr>
<th>Spectrum ID #</th>
<th>Element/Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak Width FWHM (eV)</th>
<th>Peak Area (eV x cts/s)</th>
<th>Sensitivity Factor</th>
<th>Concentration (at. %)</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>01318-02</td>
<td>Tb 3d5/2</td>
<td>1243.6</td>
<td>7.58</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-02</td>
<td>Tb 3d5/2</td>
<td>1247.1</td>
<td>4.15</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-02</td>
<td>Tb 3d3/2</td>
<td>1281.1</td>
<td>6.09</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03</td>
<td>O 1s</td>
<td>529.2</td>
<td>0.99</td>
<td>27471.5</td>
<td>0.780</td>
<td>31.72 TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>O 1s</td>
<td>531.2</td>
<td>1.90</td>
<td>4457.3</td>
<td>0.780</td>
<td>5.15 carbonate</td>
<td></td>
</tr>
<tr>
<td>01318-03</td>
<td>Tb 3d5/2</td>
<td>1247.1</td>
<td>4.15</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>Tb 3d5/2</td>
<td>1281.1</td>
<td>6.09</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>Tb 3d3/2</td>
<td>1281.1</td>
<td>6.09</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>Tb 3d3/2</td>
<td>1281.1</td>
<td>6.09</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>O 1s</td>
<td>529.2</td>
<td>0.99</td>
<td>27471.5</td>
<td>0.780</td>
<td>31.72 TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>O 1s</td>
<td>531.2</td>
<td>1.90</td>
<td>4457.3</td>
<td>0.780</td>
<td>5.15 carbonate</td>
<td></td>
</tr>
<tr>
<td>01318-03</td>
<td>O 1s</td>
<td>532.4</td>
<td>1.70</td>
<td>3757.8</td>
<td>0.780</td>
<td>4.34 carbonate</td>
<td></td>
</tr>
<tr>
<td>01318-03a</td>
<td>O 1s</td>
<td>532.4</td>
<td>1.70</td>
<td>3757.8</td>
<td>0.780</td>
<td>4.34 carbonate</td>
<td></td>
</tr>
<tr>
<td>01318-04</td>
<td>Sc 2p</td>
<td>400.9</td>
<td>1.13</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-04b</td>
<td>Sc 2p3/2</td>
<td>417.1</td>
<td>3.41</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-04</td>
<td>Sc 2p1/2</td>
<td>405.4</td>
<td>1.42</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-04b</td>
<td>Sc 2p1/2</td>
<td>417.1</td>
<td>3.41</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-05</td>
<td>C 1s</td>
<td>285.0</td>
<td>1.32</td>
<td>4758.3</td>
<td>0.278</td>
<td>17.46 hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>01318-05a</td>
<td>C 1s</td>
<td>286.6</td>
<td>1.70</td>
<td>1643.8</td>
<td>0.278</td>
<td>5.81 C-hydroxide</td>
<td></td>
</tr>
<tr>
<td>01318-05a</td>
<td>C 1s</td>
<td>288.6</td>
<td>1.59</td>
<td>960.9</td>
<td>0.278</td>
<td>0.54 carbonate</td>
<td></td>
</tr>
<tr>
<td>01318-05</td>
<td>Tb 4d</td>
<td>145.7</td>
<td>2.03</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-05b</td>
<td>Tb 4d</td>
<td>148.4</td>
<td>3.48</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-05a</td>
<td>Tb 4d</td>
<td>151.3</td>
<td>3.80</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-05b</td>
<td>Tb 4d</td>
<td>155.0</td>
<td>3.38</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Sc 3s</td>
<td>52.5</td>
<td>2.60</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Tb 5s</td>
<td>43.2</td>
<td>2.35</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Tb 5s</td>
<td>45.4</td>
<td>2.18</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Tb 5s</td>
<td>48.7</td>
<td>2.18</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Sc 3p</td>
<td>30.7</td>
<td>1.74</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Tb 5p3/2</td>
<td>20.0</td>
<td>3.00</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>Tb 5p1/2</td>
<td>28.3</td>
<td>2.26</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06</td>
<td>O 2s</td>
<td>23.1</td>
<td>3.04</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06b</td>
<td>valence band</td>
<td>10.4</td>
<td>2.33</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06b</td>
<td>valence band</td>
<td>8.2</td>
<td>1.84</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06d</td>
<td>valence band</td>
<td>6.7</td>
<td>1.55</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
<tr>
<td>01318-06e</td>
<td>valence band</td>
<td>1.8</td>
<td>0.79</td>
<td></td>
<td></td>
<td>TbScO3</td>
<td></td>
</tr>
</tbody>
</table>

- **a**: Result of exposure to air
- **b**: Position estimated by curve fitting
- **c**: O 2p, Sc 3d and Tb 4f (Ref. 16)
- **d**: O 2p and Sc 3d (Ref. 16)
- **e**: The position of VBM was estimated by subtracting 1/2 of the full width at half maximum (FWHM) from the position of the maximum intensity at the VBM.
Guide to Figures

<table>
<thead>
<tr>
<th>Spectrum (Accession) #</th>
<th>Spectral Region</th>
<th>Voltage Shift</th>
<th>Multiplier</th>
<th>Baseline</th>
<th>Comment #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1318-01</td>
<td>survey</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1318-02</td>
<td>Tb 3d</td>
<td>-1.91</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1318-03</td>
<td>O 1s</td>
<td>-1.91</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1318-04</td>
<td>Sc 2p</td>
<td>-1.91</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1318-05</td>
<td>Tb 4d, C 1s</td>
<td>-1.91</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1318-06</td>
<td>Sc 3s, Tb 5s, Sc 3p, Tb 5p, O 2s, valence band</td>
<td>-1.91</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

Analyzer Calibration Table

<table>
<thead>
<tr>
<th>Spectrum ID #</th>
<th>Element/Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak Width FWHM (eV)</th>
<th>Peak Area (eV x cts/s)</th>
<th>Sensitivity Factor</th>
<th>Concentration (at. %)</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au 4f7/2</td>
<td>84.0</td>
<td>0.72</td>
<td>151917.9</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Ag 3d5/2</td>
<td>368.2</td>
<td>0.58</td>
<td>230506.2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Cu 2p3/2</td>
<td>932.6</td>
<td>0.88</td>
<td>410979.8</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions.

Redistribution subject to IP: 73.15.5.18 On: Sun, 18 Jan 2015 23:52:15
Accession # 01318–01

Host Material
Single crystal TbScO₃

Technique
XPS

Spectral Region
survey

Instrument
Kratos Axis Ultra

Excitation Source
Al Kα monochromatic

Source Energy
1486.6 eV

Source Strength
180 W

Source Size
2 mm × 2 mm

Analyzer Type
spherical sector

Incident Angle
54°

Emission Angle
0°

Analyzer Pass Energy:
160 eV

Analyzer Resolution
2.4 eV

Total Signal Accumulation Time
560 s

Total Elapsed Time
1120 s

Number of Scans
4

Effective Detector Width
33.6 eV
Accession #: 01318–02
Host Material: Single crystal TbScO$_3$
Technique: XPS
Spectral Region: Tb 3d

Instrument: Kratos Axis Ultra
Excitation Source: Al K$_\alpha$ monochromatic
Source Energy: 1486.6 eV
Source Strength: 180 W
Source Size: 2 mm x 2 mm
Analyzer Type: spherical sector
Incident Angle: 54°
Emission Angle: 0°
Analyzer Pass Energy: 20 eV
Analyzer Resolution: 0.3 eV
Total Signal Accumulation Time: 6606 s
Total Elapsed Time: 18166.5 s
Number of Scans: 20
Effective Detector Width: 4.2 eV

Accession #: 01318–03
Host Material: Single crystal TbScO$_3$
Technique: XPS
Spectral Region: O 1s

Instrument: Kratos Axis Ultra
Excitation Source: Al K$_\alpha$ monochromatic
Source Energy: 1486.6 eV
Source Strength: 180 W
Source Size: 2 mm x 2 mm
Analyzer Type: spherical sector
Incident Angle: 54°
Emission Angle: 0°
Analyzer Pass Energy: 20 eV
Analyzer Resolution: 0.3 eV
Total Signal Accumulation Time: 1206 s
Total Elapsed Time: 3316.5 s
Number of Scans: 20
Effective Detector Width: 4.2 eV
1318-04

1318-05
Accession #: 01318–06
Host Material: Single crystal TbScO$_3$
Technique: XPS
Spectral Region: Sc 3s; Tb 5s; Sc 3p; Tb 5p; O 2s; valence band

Instrument: Kratos Axis Ultra
Excitation Source: Al K$_\alpha$
monochromatic
Source Energy: 1486.6 eV
Source Strength: 180 W
Source Size: 2 mm \times 2 mm
Analyzer Type: spherical sector
Incident Angle: 54°
Emission Angle: 0°
Analyzer Pass Energy: 20 eV
Analyzer Resolution: 0.3 eV
Total Signal Accumulation Time: 9254 s
Total Elapsed Time: 25448.5 s
Number of Scans: 20
Effective Detector Width: 4.2 eV