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Mechanical-force-induced non-local collective
ferroelastic switching in epitaxial lead-titanate
thin films
Xiaoyan Lu 1, Zuhuang Chen2, Ye Cao3, Yunlong Tang4, Ruijuan Xu4, Sahar Saremi 4, Zhan Zhang5,

Lu You 6, Yongqi Dong5, Sujit Das4, Hangbo Zhang1, Limei Zheng7, Huaping Wu8, Weiming Lv7,

Guoqiang Xie2, Xingjun Liu2, Jiangyu Li9, Lang Chen 10, Long-Qing Chen11, Wenwu Cao 7,12 &

Lane W. Martin 4,13

Ferroelastic switching in ferroelectric/multiferroic oxides plays a crucial role in determining

their dielectric, piezoelectric, and magnetoelectric properties. In thin films of these materials,

however, substrate clamping is generally thought to limit the electric-field- or mechanical-

force-driven responses to the local scale. Here, we report mechanical-force-induced large-

area, non-local, collective ferroelastic domain switching in PbTiO3 epitaxial thin films by

tuning the misfit-strain to be near a phase boundary wherein c/a and a1/a2 nanodomains

coexist. Phenomenological models suggest that the collective, c-a-c-a ferroelastic switching

arises from the small potential barrier between the degenerate domain structures, and the

large anisotropy of a and c domains, which collectively generates much larger response and

large-area domain propagation. Large-area, non-local response under small stimuli, unlike

traditional local response to external field, provides an opportunity of unique response to

local stimuli, which has potential for use in high-sensitivity pressure sensors and switches.
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Domain structure and its switching behavior are crucial to
material properties, including dielectric and piezoelectric
response in ferroelectrics and magnetoelectric coupling in

multiferroics1–3. In particular, for ferroelectrics, ferroelastic
switching (i.e., non-180° switching events) can give rise to large
dielectric and electromechanical responses due to strong lattice
strain-polarization coupling4–7. Furthermore, large-area ferroe-
lastic switching under small stimuli can also be vital for magne-
toelectric coupling in multiferroics, which are being considered
for low-power electric field-controlled spintronics8–10. Large-area
ferroelastic switching in ferroelectrics, however, has typically only
been observed in bulk materials11–13. In fact, it is generally
thought that ferroelastic switching is quenched in ferroelectric
epitaxial thin films due to substrate constraints14–16. In order to
reduce substrate clamping and facilitate ferroelastic domain
switching, several approaches have been explored17–24. For
example, by fabricating thin films into micro- or nanoscale
islands with lateral dimensions on the order of the thickness of
the film, researchers have released lateral constraint from the
substrate, thereby enabling larger fractions of ferroelastic
switching4,9. Such approaches require lithography and/or milling/
etching, both of which are time-consuming and challenging.
Furthermore, the lateral sizes of the features must be very small,
limiting the ability to produce ferroelastic switching across large
areas. Therefore, despite considerable efforts, it remains a chal-
lenge to achieve large-area ferroelastic switching in ferroelectric
epitaxial thin films.

It is also known that long-range interactions (i.e., dipole–dipole
electrostatic and elastic interactions) in ferroelectrics could induce
collective behavior during domain switching25–30. For instance,
phenomenological approaches have revealed that the electrostatic
interaction between switched nuclei in ferroelectric thin films
with 180° stripe domains can be long range and induce collective
nucleation/switching, thereby effectively reducing the switching
barrier27. Moreover, the domain-switching process in ferro-
electric ceramics is thought to be a highly correlated collective
process such that the switching process in one grain affects that in
the neighboring grains because of inter-grain elastic interac-
tions28. Such collective behavior and any resulting large responses
would be more evident in ferroelectrics perched near a phase
boundary wherein two phases are nearly energetically degenerate
and can be interconverted by small external stimuli28–31.
While most observations of collective switching behavior have
been observed in bulk or polycrystalline thin films of ferro-
electrics28–30,32, work in epitaxial thin films has shown that fer-
roelastic switching, with enhanced piezoelectric response, can be
obtained in thin films of tetragonal ferroelectrics such as
PbZr0.2Ti0.8O3 by fabrication of micro- or nanoscale islands3,33.
More recently, ferroelastic switching was also observed in tetra-
gonal ferroelectric thin films when they were grown on the right
lattice-(mis)matched substrates18,19. At the same time, the use of
scanning-probe excitation has also opened the door to induce and
control ferroelastic switching via a combination of applied vol-
tages and tip motion4,34,35. Despite these advances, however,
previous studies have illustrated only local ferroelastic domain-
switching behaviors (i.e., directly under or very close to the poling
region). It is generally well accepted that such effects will be
highly localized as the elastic clamping of the substrate limits the
ability to create large-scale ferroelastic changes in the domain
structure.

Recent studies have identified epitaxial strain approaches to
create multiple nanoscale-domain structures co-existing in
PbTiO3 thin films36 which provides an intriguing system to
explore in this regard. More specifically, 40-nm-thick, (001)-
oriented films of PbTiO3 grown on DyScO3 (110)O (where the O
denotes orthorhombic indices) experience a compressive strain

that drives the formation of traditional c/a domain structures,
while films grown on NdScO3 (110)O substrates with large tensile
strain exhibit a1/a2 domain structures, and films grown on
SmScO3 (110)O substrates with a strain state between that of
DyScO3 and NdScO3 exhibit a coexistence of both c/a and a1/a2
domain variants36. In effect, epitaxial strain can be used to place
this material on the brink of a transition between domain-
structure variants and is an ideal route by which to explore the
potential for large responses and collective effects37,38.

Here, we focus on PbTiO3 epitaxial heterostructures with co-
existing c/a and a1/a2 nanodomains by tuning the misfit strain to
be near a phase boundary. Electric field-poling studies via
scanning-probe microscopy reveal that reversible and localized
ferroelastic switching can be achieved by fine control of the out-
of-plane poling voltage. Local mechanical force induced by the tip
of an atomic force microscope, on the other hand, can drive large-
area, non-local ferroelastic switching—much larger than the
contact area. Using Landau phenomenological theory including
phase-field simulation39 and polydomain theory40, further
insights into the origin of the large-area, non-local, collective
ferroelastic switching behavior with respect to co-existing ener-
getically degenerate nanodomain variants are provided.

Results
Epitaxial growth of PbTiO3 thin films. 70 nm PbTiO3/20 nm
Ba0.5Sr0.5RuO3/SmScO3 (110)O heterostructures were deposited
by pulsed-laser deposition (“Methods”)36. The nominal misfit
strain between the PbTiO3 film and substrate, controlled to be
near a critical tensile strain (Supplementary Fig. 1), is close to the
middle of the critical misfit strains of 0.2% (below 0.2%, c/a-
domain structures are favored) and 0.8% (above 0.8%, a1/a2-
domain structures are favored) where a nearly equal coexistence
of the c/a- and a1/a2-domain variants is expected36. X-ray dif-
fraction studies and reciprocal space mapping analysis (Supple-
mentary Figs. 2 and 3) reveal the presence of high-quality,
epitaxial growth of the single-phase PbTiO3 films with a and c
domains. Cross-section, bright-field transmission electron
microscopy (TEM) (Fig. 1a) and plan-view high-angle annular
dark-field-scanning transmission electron microscopy (HAADF-
STEM) (Fig. 1b) studies confirm the presence of c/a-domain
variants with domain walls parallel to the [111]O (i.e., [101] in
pseudocubic indices), and a1/a2-domain variants with domain
walls along the ½1�11�O and 1�1�1½ �O (i.e., [110] and ½1�10� in pseu-
docubic indices, respectively) and domain widths of ~30 nm
(Fig. 1b). Note that the a1/a2 domains are obscured in the cross-
section TEM since the a1/a2 domain walls are not aligned along
the projected zone axis41. Likewise, the c/a domains are obscured
in the plan-view imaging as their domain walls run through the
thickness of the sample. Local strain fields are assessed by geo-
metric phase analysis (GPA, Gatan Digital Micrograph) and
visualized using the Gatan Digital Micrograph software42. As
compared with the lattice parameters of the bulk counterpart, the
in-plane strain (Fig. 1c) and lattice rotation (Fig. 1d) maps
extracted from the HAADF-STEM lattice image of the selected
area (red square, Fig. 1b) show near perfect periodic elastic fields
within the a1/a2 domains (head-to-tail domain structures,
Fig. 1d). Furthermore, the lattice rotation map reveals relatively
large fluctuations especially near the needle-shaped domains
(yellow square, Fig. 1d), suggesting a high degree of structural
softness (Fig. 1d)31. Previous studies in ferroelectric KH2PO4

crystals found that the interaction between such needle-shaped
domain tips is long range43,44. The observed needle domains in
these PbTiO3 films may also enhance the mobility of domain
walls and long-range interactions42,45. The co-existing domain
structure is further confirmed by piezoresponse force microscopy
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(PFM) studies (Supplementary Fig. 4). The well-ordered c/a and
a1/a2 nanodomains observed in the PbTiO3 thin films should
naturally have strong elastic interactions between neighboring
domains due to the large crystal anisotropy, which, in turn, may
facilitate collective switching behavior in the ferroelectric/ferroe-
lastic system.

Reversible control of ferroelastic switching by out-of-plane
electric fields. Earlier reports on (001)-oriented tetragonal fer-
roelectric thin films, such as PbTiO3 and PbTi0.8Zr0.2O3 films
grown on SrTiO3 (001) substrates14, indicate that it is challenging
for large-area ferroelastic switching between a and c domains
using out-of-plane electric fields because the compressive strain
imposed by the substrate strongly (elastically) favors c domains. If
the energy barrier between the in- and out-of-plane polarized
domains is made small, however, by, for example, tuning the
misfit strain, ferroelastic switching could occur36. Furthermore,
large-area, even non-local, ferroelastic switching could be enabled
when the film is tuned close to the domain-structure boundary.

To explore this idea, we first applied different out-of-plane DC
voltages using a PFM tip in a representative 1.2 × 1.2 µm area
(Fig. 2a–e). Upon poling the entire area with a −4 V bias applied
through the tip, the majority of the a1/a2 domains in the as-grown
state (with weak out-of-plane PFM response, Fig. 2a) reorganize
into c/a domains (with strong out-of-plane PFM response and
upward pointing c domains, Fig. 2b). In order to investigate the
reversibility of the ferroelastic switching, stepwise positive bias
voltages were applied in an attempt to switch the induced c/a-
domain structures back to a1/a2-domain structures. At a +2 V

applied bias, the c/a-domain structures begin to switch back into
a1/a2 domains (with low vertical amplitude, Fig. 2c). By +2.5 V
applied bias, the upward pointing c-domain regions gradually
disappear (Fig. 2d). Upon further increasing the poling voltage to
+3 V, the a1/a2-domain structures are again interconverted back
to c/a-domain structures, but this time with the c variants poled
downward (Fig. 2e). As revealed above, the domain evolution
under stepwise voltage suggests that ferroelastic switching readily
occurs and is reversible as per the process described herein
(Fig. 2f). Although c/a domains can be switched back to a1/a2
domains by application of large in-plane voltage (which also
requires lithographic patterning) as illustrated in earlier studies36,
it is interesting to note that one can also switch the c/a domains
back into a1/a2 domains step-by-step with a small and simple
out-of-plane electric field. This further suggests the rather small
energy barrier between these domain structures in the films.

Mechanical force-induced non-local ferroelastic switching. The
above demonstration of reversible a1/a2 to c/a ferroelastic
switching by purely out-of-plane electric fields, however, is found
to be localized, probably due to weak electrostatic interactions. To
trigger a larger area non-local switching, an appropriate driving
force, something more influential than electrostatics, is required.
In this regard, compared with electric field, mechanical force has
the potential to provide the long-range elastic interaction neces-
sary to drive these effects46. It is important to note that several
studies of mechanical force-induced domain switching in ferro-
electric thin films (typically due to flexoelectric effects) have been
reported47,48. Only local response to the applied mechanical
force, however, was observed in those studies. This is again due to
the large compressive misfit strain which likely favors c domains
and thus hampers ferroelastic switching. To enable collective
domain switching, the system should be carefully tuned to the
brink of a structural instability, as we have achieved here by
delicately controlling the epitaxial strain.

We apply a point array of force using an atomic force
microscope Fmap (“Methods”) on an area of the film which
possesses a majority of a1/a2 domain areas (Supplementary
Fig. 4). The force mapping is completed in a 2 × 2 array of points
(the tip radius is only ~25 nm) at the corners of a 1 × 1 µm area
within a 2 × 2 µm scanned area (Fig. 3a–d). After the application
of a setpoint with voltage of 2 V, corresponding to a force of
~600 nN (“Methods”), to the noted positions, a dramatic change
in the domain structure occurs even outside the tip-sample
contact area and appears in both the topography (Fig. 3a, b) and
out-of-plane PFM amplitude (Fig. 3c, d) images. More specifi-
cally, it is found that the majority of the initial a1/a2-domain
structures across the entire scanned area are converted to c/a-
domain structures. We note that the changes can extend across
nearly the entire 2 × 2 µm scanned area (Fig. 3b, d, and
Supplementary Fig. 5). These changes are made more evident
by extracting the evolution of the surface morphology and out-of-
plane PFM amplitude (dashed lines, Fig. 3a–d) across these
switched areas (which is outside the tip-sample contact region).
After applying the local mechanical force, the average height and
out-of-plane PFM amplitude of the switched area are ~800 pm
and ~300 pm higher than those of the as-grown a1/a2 domains
(Fig. 3e, f), respectively; clearly demonstrating that large-area,
non-local ferroelastic switching occurs (Supplementary Figs. 6–8).

Phase-field simulations of the domain switching under tip-
induced mechanical force. To understand the large non-local
response observed herein, we employed phase-field simulations
(“Methods”) to model the domain switching under tip-induced
mechanical force49. Since the observed non-local response occurs

a

b

c d
15

12

9

6

3

0

–1
–2

5
4

2
3

0
1

In
-p

la
ne

 s
tr

ai
n 

(%
)

La
tti

ce
 r

ot
at

io
n 

(d
eg

re
e)

c /a domains a1/a2 domains
[1

10
] o

[001]o

PbTiO3

Ba0.5Sr0.5RuO3

SmScO3
100 nm

100 nm

c /a

c
/a

a1/a2

a1/a2

[1
10

] o

[001]o

100 nm

Fig. 1 Domain structures of 70-nm-thick PbTiO3 films grown on
Ba0.5Sr0.5RuO3/SmScO3 (110)O. a Cross-sectional transmission electron
microscopy (TEM) image of the heterostructures where the white dashed
lines mark the PbTiO3/Ba0.5Sr0.5RuO3 and Ba0.5Sr0.5RuO3/SmScO3

interfaces. b Plan-view high-angle annular dark field-scanning transmission
electron microscopy (HAADF-STEM) image of the heterostructure where
the dashed lines indicate the a1/a2 domain walls. c In-plane strain map (εxx)
and d lattice rotation map (ω) extracted from the HAADF-STEM lattice
image via geometrical phase analysis (GPA) for the area in the red square
in (b). The yellow arrows indicate the head-to-tail structures and the blue
arrows indicate 180° domain walls. The lattice rotation at 180° domain
walls can be used to identify the polarization directions beside the domain
walls. Yellow-border square in (d) reveals relatively large fluctuations
especially near the needle-shaped domains

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11825-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3951 | https://doi.org/10.1038/s41467-019-11825-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in the areas where a1/a2 domains dominate, we start from a
quasi-stable state of a1/a2 domains under a 0.5%-strain state (time
step 0, Fig. 4a). Upon application of the four-point 600 nN tip
force in a 2 × 2 array, non-local a1/a2 to c/a switching gradually
occurs which eventually penetrates through the entire film

thickness (with c/a walls oriented 45° in the cross-section x-z
plane) (Fig. 4), consistent with the experimental results. After
applying the local mechanical force, the initial a1/a2 domains
beneath the probe tip remain unchanged because the large, tip-
induced out-of-plane compression would favor a domains with
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in-plane polarization (Supplementary Fig. 9). The lattice of as-
grown, in-plane polarized a domains under the tip-induced
pressure will slightly expand along the in-plane direction50. To
match the epitaxial tensile strain, c domains are formed adjacent
to the a domains to locally decrease the average in-plane lattice
parameter, resulting in head-to-tail c/a-domain structures.
Moreover, near the tip-sample contact area, strain-gradient
induced, out-of-plane flexoelectric fields would also favor the
formation of c domains (Supplementary Fig. 10)51. Under these
combined effects, more c domains emerge at the top surface of the
film near the tip-sample contact area (Fig. 4b, c). Eventually, c
domains penetrate all the way across the film over a large area to
maintain the lowest total free energy (Fig. 4d–f). Based on the
phase-field simulations, the Landau free energy and electrostatic-
energy density both decrease during the formation of the c
domains, while the gradient-energy density increases due to the
formation of domain walls (Supplementary Fig. 11). This domain
propagation is also evident in the in-plane tensile strain fields,
which expand gradually into a large area corresponding to the
formation of the c domains (Supplementary Fig. 12). Again, to
match the epitaxial tensile strain, a domains are favored next to c
domains, then, followed with a domains. Since the surrounding
a1/a2 domains are already relatively unstable under the tensile
stress surrounding the probe tip, the system is driven into suc-
cessive switching with energetically favorable head-to-tail c/a
configurations co-existing with remaining a1/a2 domains until a
new energy equilibrium is reached. Since the structure prefers to
maintain head-to-tail domain structures to minimize the total
energy, the change of domain structures in a local area will release
energy and eventually propagate across long distances, leading to
collective switching.

Discussion
Such a collective domain switching process is strongly related to
the potential energy barrier between the two domain-structure
variants. Based on Landau-type phenomenological theory for
polydomain structures38, the calculated Landau free-energy
densities of the a1/a2 and c/a domain patterns are equal at the
critical strain of ~0.46% at 300 K; however, at high temperature,

such as 500 K, are about −22MJ/m3 and −19MJ/m3, respec-
tively, with an energy difference of only ~3MJ/m3 (Supplemen-
tary Fig. 13). The transition barrier between the a1/a2- and
c/a-domain patterns is much lower than the energy required for
the polarization switch, such as the c+ to c–, of about 48MJ/m3

(Supplementary Fig. 13). Such a small energy barrier between the
a1/a2- and c/a-domain variants gives the possibility of domain
switching propagation. Since the initial domains formed in the as-
grown heterostructures are dominated by the a1/a2 domains due
to the relatively lower free-energy potential, external stimuli that
overcomes the initial energy barrier will force the system to
reconfigure into a more favorable state (i.e., co-existing a1/a2 and
c/a domains). Specifically, the mechanical force applied by the
probe tip can gently lower the energy barrier and drive the system
to a final state favoring a domain pattern with the coexistence of
a1/a2 and c/a domains.

This is further supported by phase-field simulations of similar
films under different strain states. When the misfit tensile strain
is <0.2%, the c/a domains dominate and the a1/a2-domain
structure is unstable even before applied tip forces (Supplemen-
tary Figs. 14a–c). For films under misfit strains > 0.3%, however,
the pure a1/a2-domain structures are in quasi-steady state (Sup-
plementary Fig. 14d–e). We also note that the thickness effect in
the phase-field simulation is small (Supplementary Fig. 15). In a
small range of misfit strains (0.3–0.5%), non-local response is
triggered upon the application of tip pressures, accompanied with
a sudden decrease of the total free energy, indicating that the
newly formed co-existing c/a and a1/a2 domains have lower total
free energy than the original a1/a2-domain structures (Fig. 5a). It
is found that the a1/a2 domains become more favorable with
increasing tensile strain, and thus the initial total free energy
density (t= 0) decreases with increasing misfit strain (um), and
the decrease of the total average free-energy density becomes
smaller with subsequent collective switching. Such collective
switching disappears upon further increasing the misfit strain. For
example, films under a tensile strain of 1% have an equilibrium
state of a1/a2 domains and only subtle changes exist near the tip
contact area (Fig. 5b). Ultimately, both the experiments and
phase-field simulations reveal that the delicately balanced elastic
field in such systems with co-existing domains is crucial for the
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–

Fig. 4 Phase-field simulations of mechanical force-induced domain evolution. The films with a1/a2 domains are subjected to 0.5% tensile strain. a As-
grown a1/a2 state at t= 0Δt with illustration of probe tip force locations as noted by four circles, and arrows indicate the polarization directions of a1/a2
domains, b t= 100Δt where c domains emerge around the tip-sample contact area, c t= 500Δt where more c+ domains (red area, polarization up, noted
with⊙) are formed and c domains (blue area, polarization down, noted with⊕) adjacent c+ domains begin to emerge, d, t= 1000Δt where c domains
penetrate all the way down to the bottom, e, t= 1500Δt and f, t= 2000Δt where more c domains begin to form, resulting c/a domains structures
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large response since the elastic field in the film can be easily
rebuilt and extended under external perturbation.

In summary, we have successfully demonstrated a long-range,
non-local ferroelastic switching behavior in tensile-strained
PbTiO3 thin films on SmScO3 (110) substrates wherein a1/a2-
and c/a-domain structures coexist. Due to the low-energy barrier
between the energetically degenerate periodic domain structures,
an exotic mechanical force-induced ferroelastic switching with an
area much larger than the direct contacting points is observed,
accompanied by a large change in topography and piezoelectric
response. Phase-field simulations reveal that the nearly energeti-
cally degenerate nature of the different domain states is the cause
of the delicately balanced elastic field, which is responsible for the
large response since the elastic field can be easily rebuilt and
extended under external perturbations. Our results pave a new
way for possible applications in sensitive mechanical sensors and
switches by manipulating the ferroelastic switching behavior of
ferroelectric thin films.

Methods
Thin film synthesis. Heterostructures were grown via pulsed-laser deposition
using a KrF excimer laser (248 nm, Compex, Coherent). Epitaxial 70-nm-thick
PbTiO3 films were grown on 20 nm Ba0.5Sr0.5RuO3/SmScO3 (110)O substrates
(CrysTec GmbH, Germany) from ceramic targets. The Ba0.5Sr0.5RuO3 layer was
grown at a temperature of 750 °C in a dynamic oxygen pressure of 20 mTorr at a
laser repetition rate of 3 Hz and a laser fluence of 1.9 J/cm2. The PbTiO3 layer was
grown at a temperature of 675 °C, in a dynamic oxygen pressure of 50 mTorr at a
laser repetition rate of 10 Hz, and a laser fluence of 1.9 J/cm2. Following growth, the
heterostructures were cooled down to room temperature at a rate of 20 °C/min, in a
static oxygen pressure of 700 Torr.

Structural characterization via X-ray diffraction. θ � 2θ measurements were
carried out using a Panalytical X’pert Pro diffractometer with Cu Kα1

radiation
(wavelength λ of 1.54056 Å). X-ray reciprocal space mapping studies were carried
out at the Sector 33-BM-C beamline of the Advanced Photon Source, Argonne
National Laboratory.

Scanning transmission electron microscopy (STEM). Cross-sectional and plan-
view samples were prepared by slicing, grinding, dimpling, and finally ion-milling
using a Gatan PIPS, while the plan-view samples were milled only from the sub-
strate side. The HAADF-STEM images were obtained by using a Titan G2 60e300
microscope with a high-brightness field emission gun and double aberration (Cs)
correctors from CEOS operating at 300 kV. Strain fields were deduced by using
custom plugins of GPA for the software Gatan Digital Micrograph. The

visualization of strains and lattice rotations were carried out using the Gatan
Digital Micrograph software.

PFM studies and force mapping. The PFM studies were carried out on a MFP-
3D, (Asylum Research) in DART mode using Ir/Pt-coated conductive tips
(Nanosensor, PPP-NCLPt with spring constant ktip of ~3 Nm−1 and AmpInvOLS
of 100.55 nm/V). The tip spring constant ktipwas calibrated by using a quartz plate

based on the formula ktip ¼ kstd
InvOLSstd
InvOLStip

� 1
� �

withInvOLStip the inverse optical

lever sensitivity (with units of nm/V) for the cantilever under test measured on a
very stiff surface, and InvOLSstd the same quantity measured on a compliant
surface with spring constant kstd. We note that the software Igor Pro 6.37 (Asylum
Research) can determine the cantilever’s spring constant based on the equi-
partition theorem following a 3-step procedure in the Manual of spring constant
determination (MFP-3D™ Procedural Operation ‘Manualette’ Version 10 (v080501;
Igor 6.04 A)). The applied driving voltage (relative trigger point) of 2 V corre-
sponds to the force of 600 nN with the tip spring constant of about 3 Nm−1

(Nanosensor PPP-EFM) based on the formula F ¼ ktip � AmpInvOLS � V . We note
that the force mapping uses direct current (DC) voltage, while the PFM imaging
scan uses alternating current (AC) driving voltage of 1 V in dual AC resonance
tracking (DART) mode with smaller contact force.

Force mapping was completed with a 2 × 2 array of points on the corners of the
mapping area. First, the tip was lifted to a distance of 1.5 µm above the film surface,
then fast driven down to the point with a velocity of 2.98 µm/s. After a dwell time
set as 0.99 s, the tip was then lifted and moved to the second point in the order of
from top-to-bottom and from left-to-right in each row with velocity of 1.5 µm/s.

Phase-field simulations. In the phase-field simulations of the domain switching
under mechanical tip pressure, we use polarization vector P ¼ P1; P2; P3ð Þ as the
order parameter to describe the ferroelectric state in the PbTiO3 thin film. The
temporal evolution of Pi (i= 1–3) is calculated by minimizing the total free energy
F with respect to Pi via numerically solving the time-dependent
Landau–Ginzburg–Devonshire (LGD) equations37,

∂Piðx; tÞ
∂t

¼ �L
δF

δPiðx; tÞ
; ði ¼ 1 � 3Þ ð1Þ

where x is the spatial position (with x-, y-, z- axes along the [100], [010], and [001]
Cartesian coordinate directions), t is the time, L is the kinetic coefficient related to
the domain wall mobility. The total free energy F of the PTO thin film includes
the Landau, gradient, elastic, electrostatic, and flexoelectric energies, which is
written as,

F ¼
Z
V

½ flanðPiÞ þ fgradð∇PiÞ þ felasðPi; εijÞ þ felecðPi; EiÞ þ fflexoðPi; εkl ;∇Pi;∇εklÞ�dV ð2Þ

where V is the total volume of the system, εij and Ei denote the components of
strain and electric fields, ∇ is the gradient operator. Detailed expressions of each
free-energy density can be found in the Ref. 47. Equation (1) is numerically solved
using a semi-implicit spectral method52 based on a 3D geometry sampled on a
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128Δx × 128Δy × 32Δz system size, with Δx= Δy= Δz= 1.0 nm. The thickness of
the film, substrate, and air are 20Δz, 10Δz, and 2Δz, respectively. The temperature
is T= 25 °C, and an isotropic relative dielectric constant (κii) is chosen to be 50.
The gradient-energy coefficients are set to be G11=G110 ¼ 0:6, while
G110 ¼ 1:73 ´ 10�10 C�2 m4 N. The Landau coefficients, electrostrictive coefficients,
and elastic-compliance constants are collected from Ref. 53. The flexoelectric energy
can be written as54

fflexo ¼
Fijkl
2

ðεij
∂Pk
∂xl

� Pk
∂εij
∂xl

Þ ð3Þ

where, Fijklði ¼ 1 � 3Þ are the flexoelectric coupling coefficients. In our previous work
we found that the longitudinal (F11), shear (F12) and transverse (F44) flexoelectric
coefficients could affect the polarization tilt near the domain wall/substrate junctions,
where Fij’s are the three independent flexoelectric coupling coefficients in the cubic
system using Voigt notation, i.e., F11= F1111, F12= F1122, and F44= 2F1221. Due to the
uncertainties of the magnitude of Fij’s, we use F11= 1.0 × 10−11 (Vm2N−1) and
assume F12= F44= 0 for simplicity based on literature52. We model the scanning-
probe tip as a spherical indenter on the film surface, and define the normal stress
distribution on top surface based on the Hertzian model,

σtip33 ðrÞ ¼
� 3F

2πa2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

q
ðr � aÞ

0:0 ðr � aÞ

(
ð4Þ

in which F is the mechanical load, a is the radius of the tip-sample contact area, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2

q
is the distance from any points (x,y) inside the contact

area to the tip center (x0,y0).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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